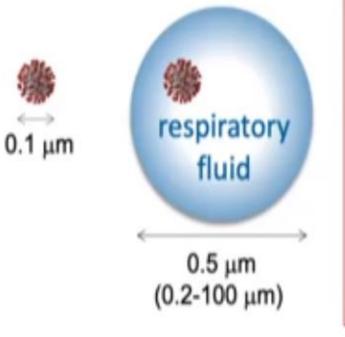


Garth Hunter **Occupational Hygienist** MSc, ROH SAIOH, CM Saiosh

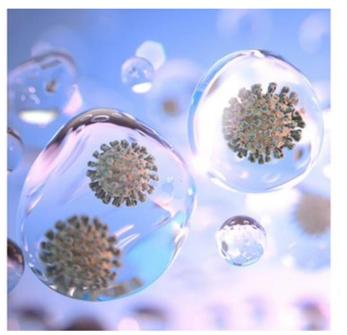

AGRICULTURE CONSTRUCTION SHIPPING ENGINEERING AVIATION TRANSPORT PACKAGING OIL AND GAS

ELECTRONICS

Size of Droplet / Aerosol Critical

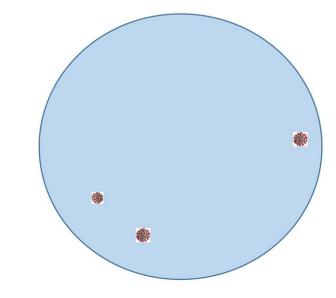
- 1. Airborne virus is not naked
- 2. Size of carrier droplet/aerosol defines transport

- How long it stays aloft
- How far it can travel
- How quickly it falls to surfaces
- Where it deposits in the respiratory system
- How efficiently it is removed by masks and filters
- Physics is the same for all viruses


Not only N95 & HEPA

Many visualizations are incorrect

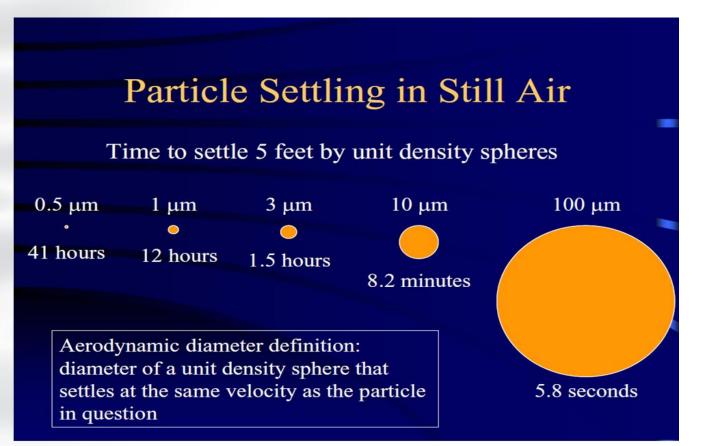
Incorrect


- Aerosols too small relative to the virus (look like 0.2-0.3 um)
- Looks like water + virus only
- Mass fraction of virus very high

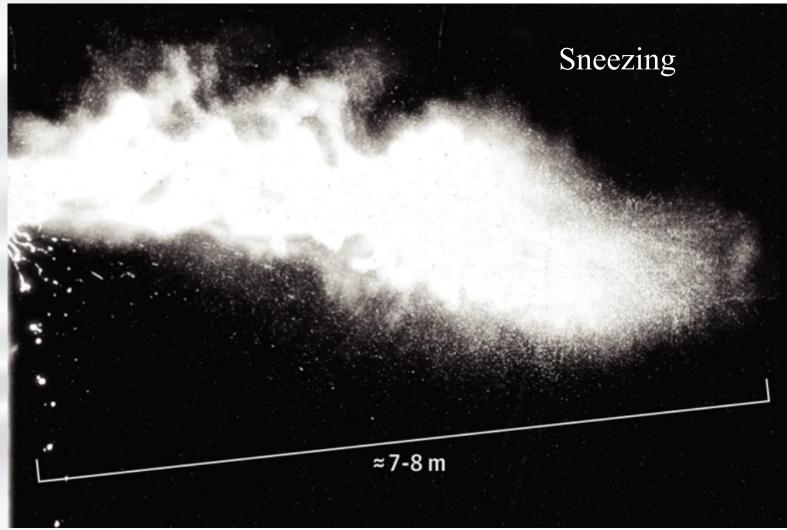
From <u>Klompas</u> et al., JAMA (2020) https://jamanetwork.com/journals/jama/fullarticle/2768396

More correct

- More typical: few micron aerosol
- Mucin, NaCl, water + sprinkle of virus
- Mass fraction of virus very low

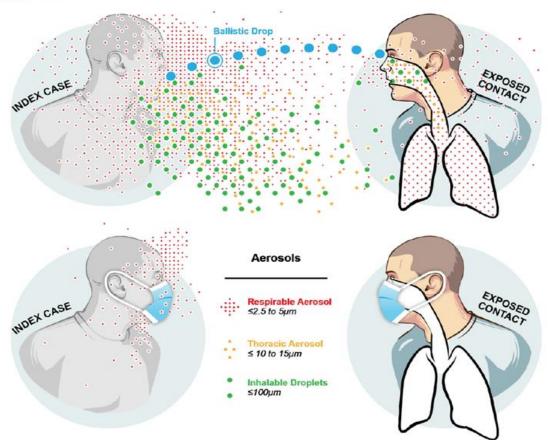


Droplets vs Aerosols


"Droplets traditionally have been defined as being >5 µm in size https://www.cdc.gov/infectioncontrol/guidelines/isolation/scientific-review.html

• CDC also say: web page, "Aerosols 101" presentation: <u>https://t.co/HXnHGnf2up?amp=1</u>

Speaking produces 100x more aerosol than droplets

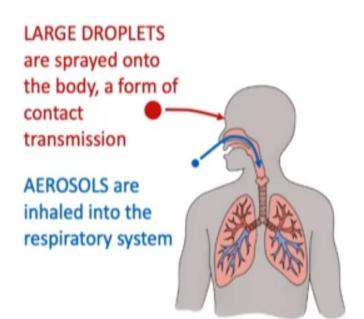


COVID-19 Airborne disease

It is Time to Address Airborne Transmission of

COVID-19

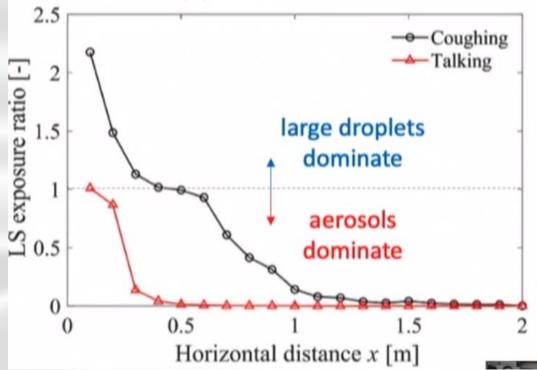
Lidia Morawska1,*, Donald K. Milton2 239 scientists signed commentary


Defining transmission by Exposure path

Droplets / Aerosol *inside* the body & *outside* the body are different sizes – important for ventilation

Inside the body: RESPIRATORY VS NON-RESPIRATORY > 5µm URT < 5µm LRT

Outside the body: DROPLETS, physics based cut-off 60-100μm Sprayed: Ballistic drops > 100μm,


direct hit on eye nostril or mouth

Transmission: Droplets vs Aerosols

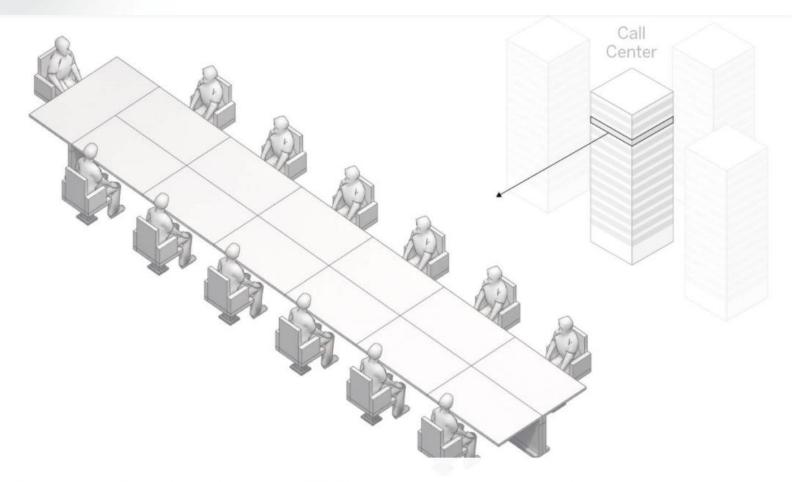
Ratio of exposure by large droplet spray (L) to inhalation of short-range aerosols (S)

Primary transmission mechanism of COVID-19 is through aerosol not large droplets

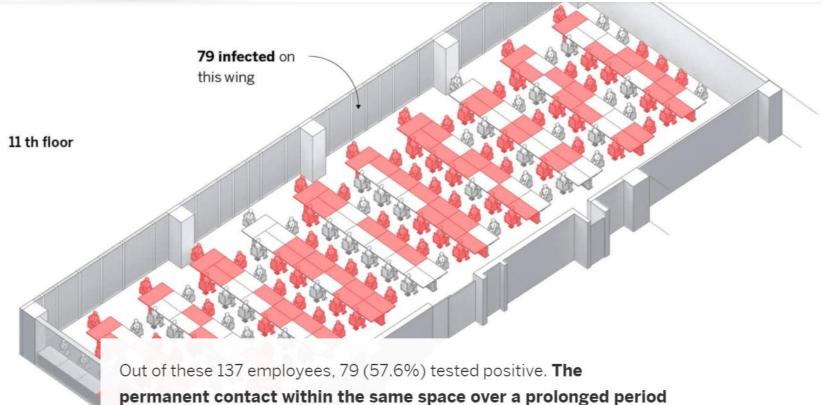
Measles has R0 of 15 COVID-19 has R0 of 5.7, flu has R0 of 1.3

COVID-19 does not spread between floors on multi-story buildings

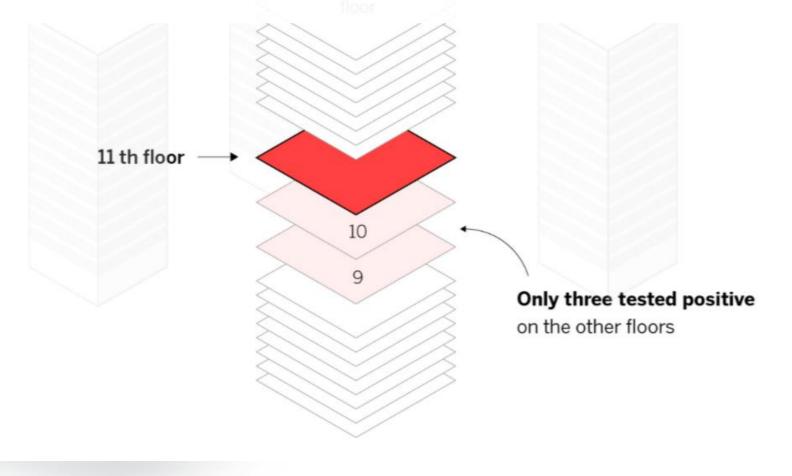
Measles is a high-contagiousness aerosol-driven disease. COVID-19 is likely a lower-contagiousness aerosol driven disease. It infects best at close proximity, also at the room scale if we "help it along" (indoors, low ventilation, long time, no masks). And it has trouble infecting at long range 1


Evidence vs. Modes of Transmission

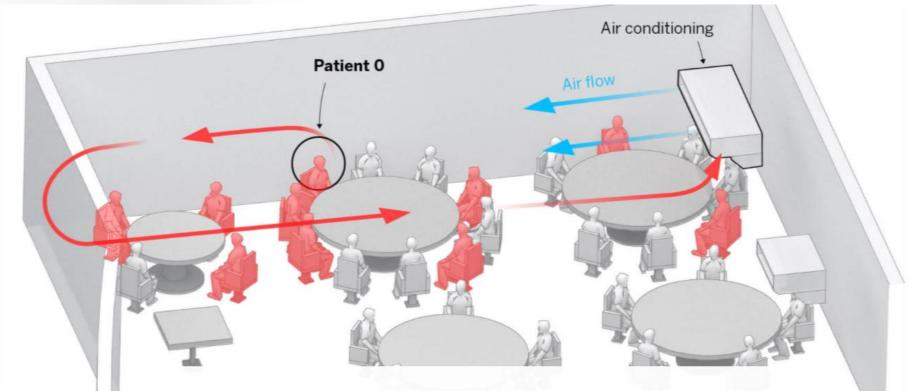
	Droplets	Fomites	Aerosols	Key: ✓: evidence ✓✓: very strong ev.
Outdoors << Indoors	X	✓	~~	X: no evidence
Similar viruses demonstrated	X	~	✓	X: evidence against n/a: not applicable
Animal models	?	\checkmark	~	
Superspreading events	X	X	~~	-
Supersp. Patterns similar to known aerosol diseases	n/a	n/a	~	More details and references: <u>http://tinyrul.com/aerosol-pros- cons</u> Only including the items that could bear on multiple pathways. See other slides for details and references
Importance of close proximity	\checkmark	X	~~	details and references: <u>http://finyrul.com/aerosol-pr</u> Only including the items that could bear on multiple vays. See other slides for details and references
Consistency of close prox. & room-level	X	X	~	More details and references: <u>http://tinyrul.com/aero</u> . <u>cons</u> Only including the items that could bear on mu pathways. See other slides for details and references
Physical plausibility (talking)	X	\checkmark	~	tinyru could
Physical plausibility (cough, sneeze)	√	\checkmark	~	<u>http://</u> is that r detai
Impact of reduced ventilation	X	X	✓	ences: ences: des fo
SARS-CoV-2 infectivity demonstrated in real world	X	X	\checkmark	l refer ding th her sli
SARS-CoV-2 infectivity demonstrated in lab	X	\checkmark	\checkmark	ils and inclue See of
"Droplet" PPE works reasonably well	✓	\checkmark	\checkmark	e deta Only ways.
Transmission by a/pre-symptomatics (no cough)	X	\checkmark	~	More <u>cons</u> pathw
Infection through eyes	\checkmark	\checkmark	\checkmark	
Transmission risk models	✓	\checkmark	\checkmark	••••


South Korea

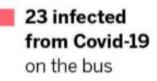
The staff at the call center on the 11th floor **work together** at desks containing 13 work stations.

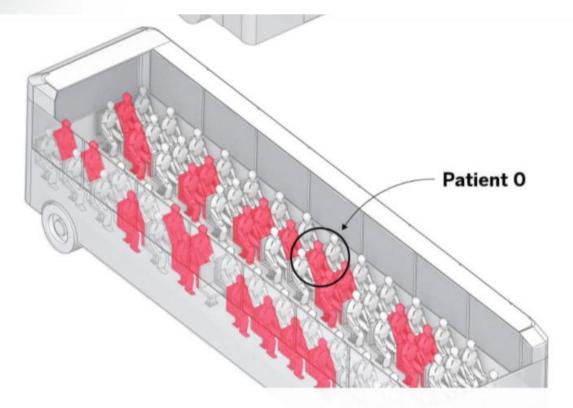


permanent contact within the same space over a pro of time played a crucial role.


S Korea – call centre

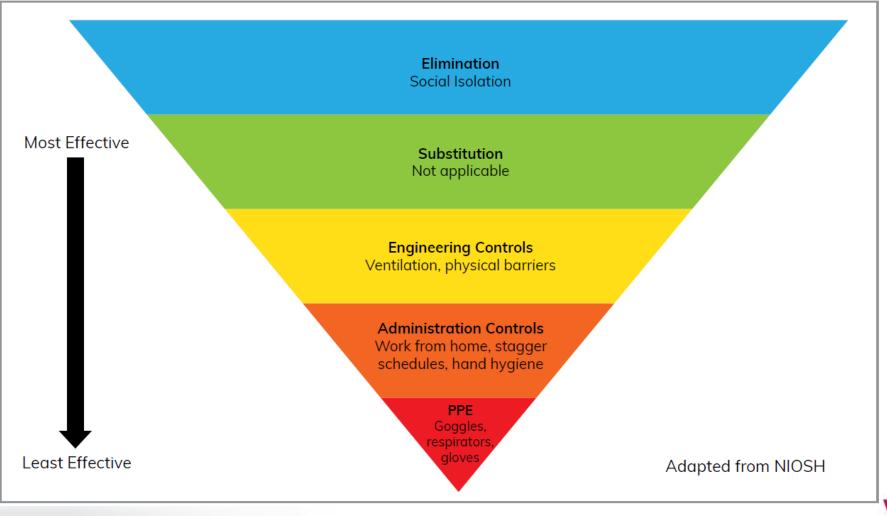
In the rest of the building, **only three people tested positive** out of 927 who underwent checks (0.3%) despite the fact they shared lobbies, elevators and other communal areas.


Chinese Restaurant



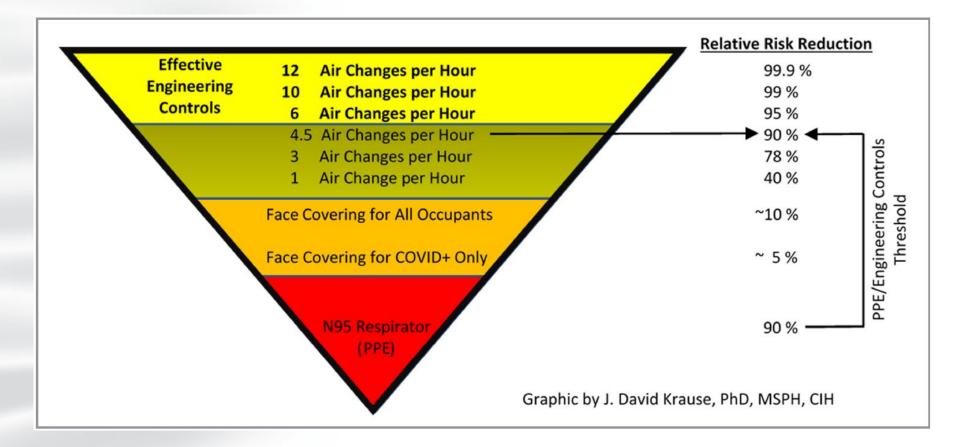
Researchers believe that **the air conditioning played a crucial role.** It meant the air was recirculating continuously between the three tables, concentrating the tiny, **virally charged micro-droplets** that Patient 0 was expelling into the atmosphere among these customers.

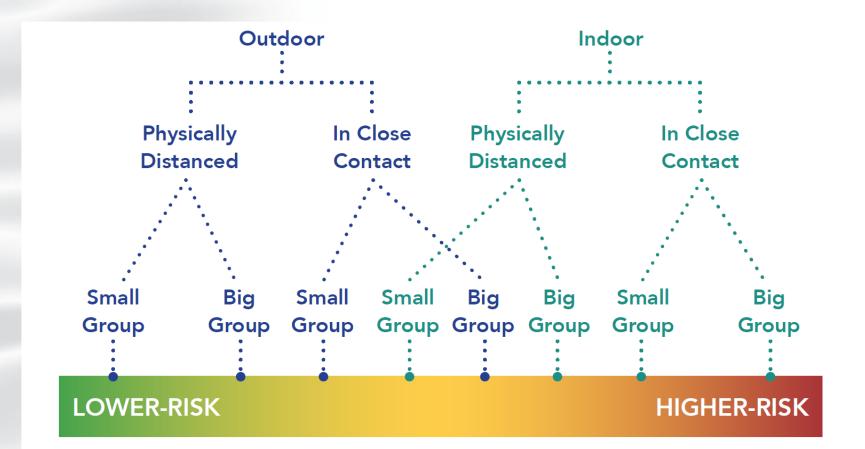
In total, **23 people got infected** on the bus. No one became ill on the other bus, despite the fact they were all mixing at the ceremony.


Definition ventilation

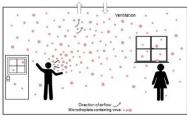
Ventilation (alternate definition)

Designed supply and removal of air to and from a treated space. (EN 12792)

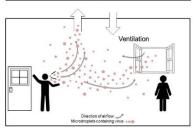

Not all barriers are equal

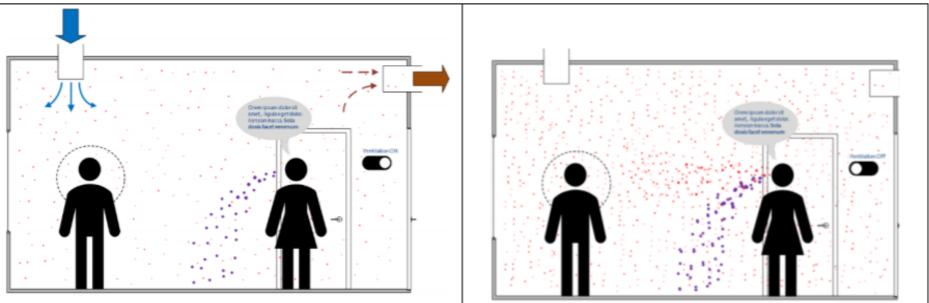


% Risk reduction



Risk assessing meetings




Virus concentration & ventilation

The particles generated by respiratory activities are small enough to stay suspended in the air for a long time...

...unless they are removed from the air by ventilation (and other processes).

Ventilation STD's – South Africa

SANS 10400-O (2011): Buildings either naturally ventilated (4.3.1) or artificially ventilated (4.3.2). ARTIFICIAL

Type of occupancy	Minimum ou requirer		Requirement	
	Air changes per hour	L/s per person	Requirement	
Educational buildings	$\left(\right)$			
Classrooms	(2)	7,5	Air supply required per person with	
Laboratories	2	7,5	required minimum air changes per	
Libraries	2	6,5	hour	
Health care facilities				
Surgical and critical care:				
Operating theatres and suites	20	_	Pressure relative to adjacent area shall be positive	
Wound intensive care (burns)	6	-	Pressure relative to adjacent area shall be positive	
Critical and intensive care, treatment and delivery rooms	6	_	Pressure relative to adjacent area shall be positive	
Trauma, ER waiting rooms, radiology waiting rooms and triage	12	_	Pressure relative to adjacent area shall be negative	

2 ACPH – allows comfort & prevents body odour – doesn't smell stuffy 12 ACPH – prevents transmission of HBA – Influenza / COVID-19

Current ASHRAE CO2 guidance

- Research shows ASHRAE guidance of 700 ppm above ambient does not prevent measles, influenza, or rhinovirus in a school or office
- SANS 10400 Part O, EN 16798 and research all align

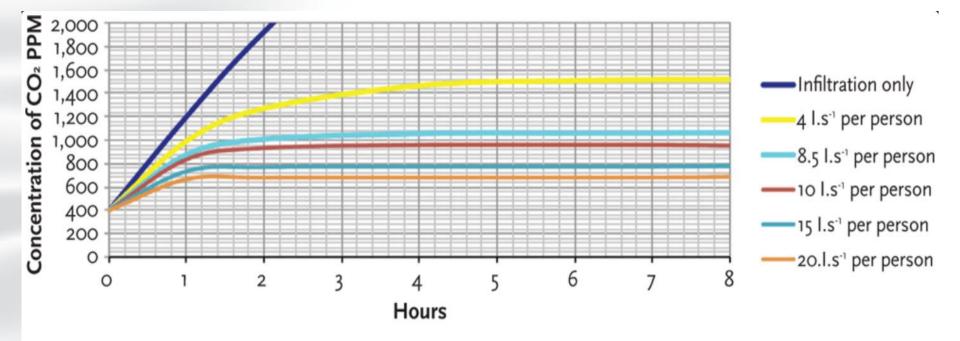
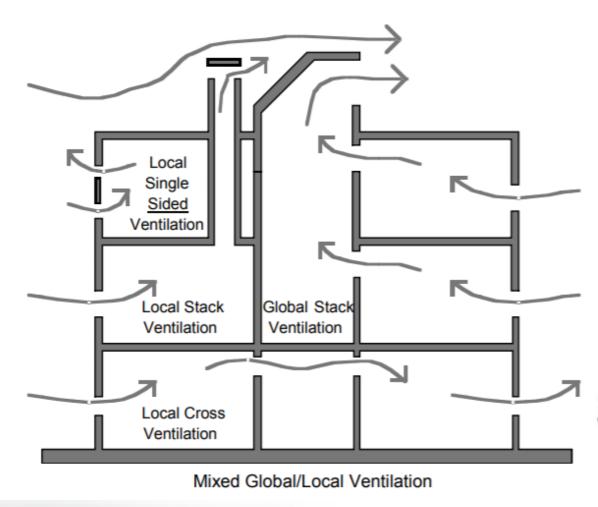
Cat	Indoor Air Quality	CO2aboveoutdoorair(ppm)	Fresh Air Face (L/s/person)
IDA1	High	<400	>15
IDA2	Medium	400-600	10-15
IDA3	Moderate	600-1000	6-10
IDA4	Low	>1000	<6

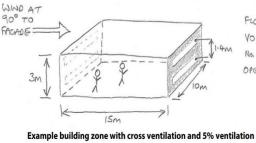
Indoor Air Quality and CO₂ levels and Fresh Air Face delivery (EN 16798)

Require 15L/s per person - approximately 12 ACPH

CO2 – proxy for SARS CoV2 concentrations

- Recommended COVID-19 guidance for CO2 = <400 above ambient / 800ppm
- Practically continuous CO2 dataloggers should be set to alarm at 800ppm

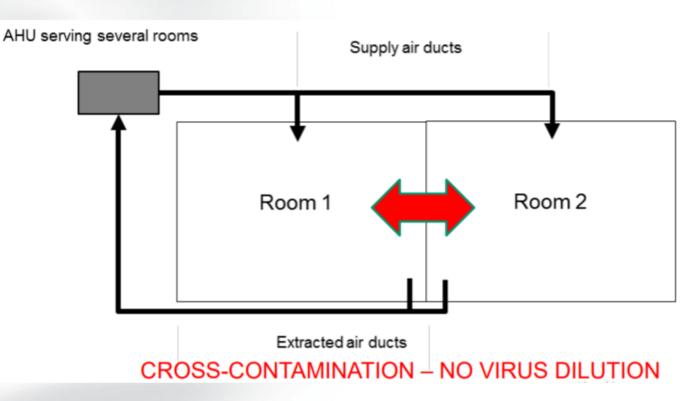




Figure 2: Average room CO² levels at various fresh air supply rates for example office with 20 people

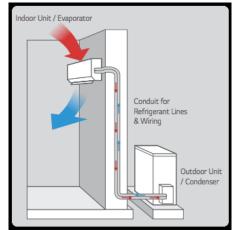
Natural ventilation

Three fundamental approaches to natural ventilation:

- Wind-driven cross ventilation - preferred
- Buoyancy-driven stack ventilation, and
- Single-sided ventilation

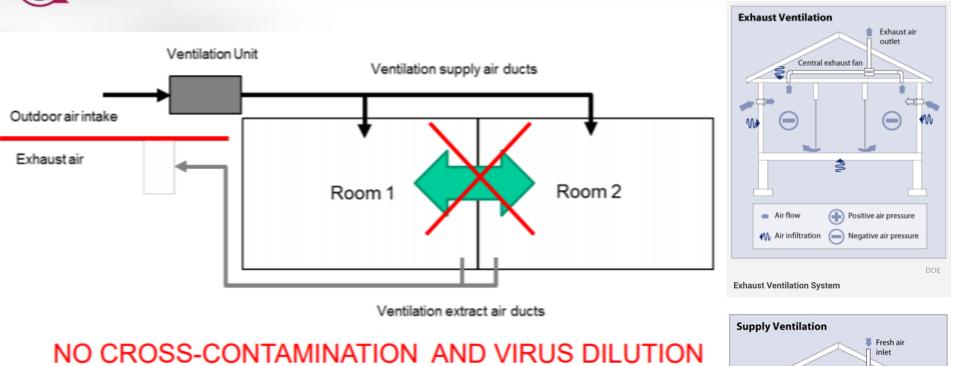


FLOOR ANDA = 150m2 YOLUME = 4.50m NO, OF ISOPLE = 15 OPENING ANDA = 7.5 m2 (0.1875m2x4)


SATOH

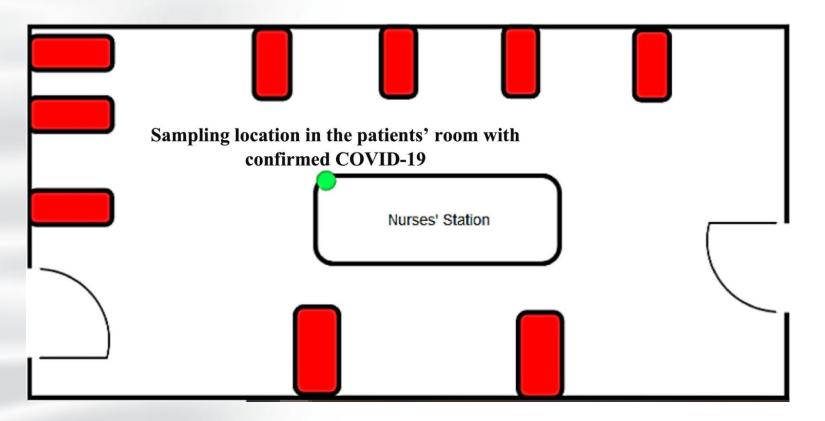
Example building zone with cross ventilation and 5% ventilation openings

Air conditioning system – no ventilation

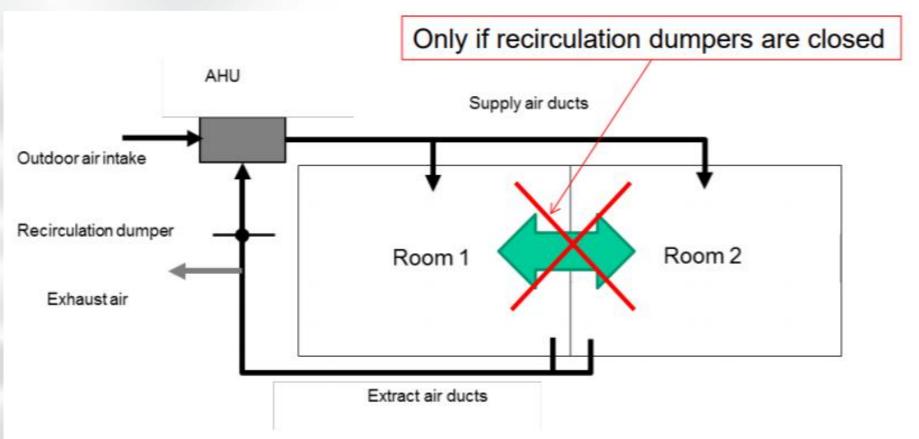

Mid-wall split unit – with no fresh make up air capability does not provide ventilation


 No artificial ventilation system – only ventilation possible is through opening windows / doors

Split unit air conditioner + Mechanical ventilation

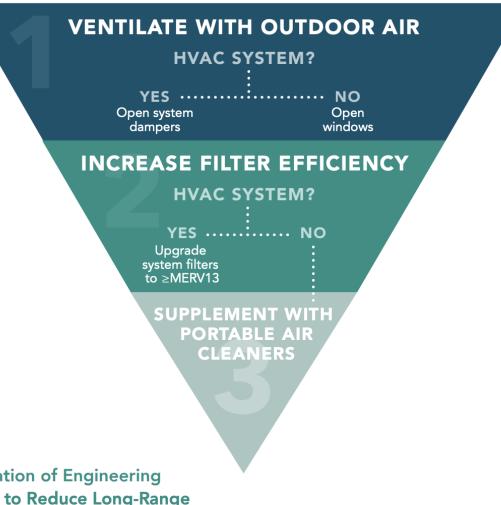


- Supply outdoor air is provided to each room, is extracted and expelled outdoor,
- Virus concentration reduced through dilution with provided outdoor air.


Hospital Positive COVID-19 patients

Hospital evidence: no infection risk at 2 m distance, with ventilation rates at 36 L/s per person

https://doi.org/10.1016/j.scitotenv.2020.138401-


All-Air HVAC System

POSSIBLE CROSS-CONTAMINATION IF RECIRCULATION IS ALLOWED BUT VIRUS DILUTION

Selection of engineering controls

Prioritization of Engineering Controls to Reduce Long-Range Airborne Transmission

Assessment of all buildings

Developing "Limitations of use"

Meeting Rooms

					5 1001115						
Meeting Rooms Central training	Natural	Windows	Doors	Cooling system	Mechanical Ventilation	Dampers open	SANS 10400 Part O (Compliant Y/N)	Outdoor air	Floor area M2	No of People (for Social Distance)	Limitations for use
rooms											
1	Yes	3	2	HVAC	Yes	Yes	Yes	Yes	100	23	23 people + Monitor CO2
2	Yes	1	1	HVAC	Yes	Yes	Yes	Yes	20	7	7 people + Monitor CO2
3	No	0	1	HVAC	Yes	Yes	Yes	Yes	10	3	3 people + Monitor CO2
4	Yes	4	1	HVAC	Yes	Yes	Yes	Yes	40	14	14 people + Monitor CO2
5	Yes	4	1	HVAC	Yes	Yes	Yes	Yes	40	14	14 people + Monitor CO2
6	No	0	2	HVAC	Yes	Yes	Yes	Yes	350	67	67 people + Monitor CO2
Ops training rooms											
7	No	0	1	Split	No	N/A	No	No	18	6	6 people + door open for duration + CO2
8	Yes	1	2	Split	No	N/A	No	Yes	18	6	6 people + windows/door open for duration + CO2
9	Yes	2	1	Split	No	N/A	Yes	Yes	20	7	7 people + windows/door open for duration + CO2
10	Yes	2	1	Split	No	N/A	Yes	Yes	20	7	7 people + windows/door open for duration + CO2
11	Yes	2	1	Split	No	N/A	Yes	Yes	36	12	12 people + windows/door open for duration + CO2
12	Yes	2	1	Split	No	N/A	Yes	Yes	26	9	9 people + windows/door open for duration + CO2
13	Yes	3	1	Split	No	N/A	Yes	Yes	18	6	6 people + windows/door open for duration + CO2
14	Yes	6	1	Split	No	N/A	Yes	Yes	28	9	9 people + windows/door open for duration + CO2
15	Yes	2	1	Split	No	N/A	Yes	Yes	38	12	12 people + windows/door open for duration + CO2
16	Yes	2	1	Split	No	N/A	Yes	Yes	21	7	7 people + windows/door open for duration + CO2

ISO 16890 Filter Group Efficiencies

Coarse	< 50% of PM10
ePM10	\geq 50% of PM10
ePM2.5	\geq 50% of PM2.5
ePM1	\geq 50% of PM1

ISO 16890 exposes a filter to particles from 0.3 μ m all the way up to 10 μ m. This comes closer to real life conditions.

EN 1822 High efficiency air filters (EPA, HEPA and ULPA)

-	INTEGRA	AL VALUE	LOCAL VALUE		
FILTER CLASS	EFFICIENCY %	PENETRATION %	EFFICIENCY %	PENETRATION %	
E10	≥85	≤15			
E11	≥95	<i>≤</i> 5	_	_	
E12	≥99,5	$\leq 0,5$	_	_	
H13	≥99,95	$\le 0,05$	\geq 99,75	≤ 0,25	
H14	≥99,995	\leq 0,005	≥99,975	≤ 0,025	
U15	≥99,9995	\leq 0,0005	≥99,9975	≤ 0,0025	
U16	≥ 99,99995	\leq 0,00005	≥ 99,99975	\leq 0,00025	
U17	≥ 99,999995	\leq 0,000005	≥ 99,9999	≤ 0,0001	

Changing filters not simple:

- Increased pressure load
- > Air bypassing filters
- > maintenance
- > filter changes

33

Conclusion ventilation beyond COVID

- Understanding of the role of ventilation in reducing influenza infections not new – 2011 research
- Increasing the ventilation rate from 8L/s per person to 15L/s per person, US economy would save US\$37.5bn dollars per year through reduced absenteeism and employee performance
- World pre and post COVID-19 different, including a permanent priority change in the control of HBA including influenza
- Recommendation to achieve ventilation rates of 15L/s per person of outdoors air will stand even once the COVID-19 pandemic has passed

34

Conclusion: consider pollution & HBA

No one size fits all:

- Higher atmospheric pollution > reliance on filters (CO₂ becomes < useful)
- Lower atmospheric pollution > reliance on outdoor air

Thank you

